Journal: Synthetic and Systems Biotechnology
Article Title: Engineering Escherichia coli for robust Co-utilization of glucose and xylose enables high-titer succinate production from lignocellulosic hydrolysates
doi: 10.1016/j.synbio.2026.01.006
Figure Lengend Snippet: Evaluation of exogenous xylose utilization pathways and library-based strain selection. (A) Schematic comparison of the endogenous XI pathway with the Dahms and Weimberg pathways; (B) Design of pathway plasmid libraries and RBS variants controlling expression of key genes for Dahms and Weimberg pathways. The Weimberg library plasmid carries XylA , XylX , and XylB from C. crescentus , while the Dahms library plasmid contains XylB from C. crescentus . The helper plasmid harbors xylC from C. crescentus and the endogenous yjhG from E. coli . RBS sequences were designed with 32 mutations, enabling gene expression levels ranging from 4 to 57,523 au; (C) Growth and succinate production of four representative ESC7 derivatives (ESC7-W1, ESC7-W2, ESC7-D1, ESC7-D2), which were randomly selected from the Weimberg (W1, W2) or Dahms (D1, D2) pathway libraries, compared with ESC6 (XI pathway); (D) Fermentation performance of the same four ESC7 clones carrying the helper plasmid (harboring XylC and yjhG ), compared with ESC6; (E) Validation of pathway combinations in the ESC6 background using the same four representative plasmids, integrating XI with Dahms/Weimberg routes and help plasmid; (F) Screening of library colonies identified six optimal variants, which were reconstructed in ESC6 and evaluated for succinate production from glucose–xylose mixtures. All experimental data were performed in triplicate, and error bars represent the standard deviation. Statistical analysis was performed using a two-tailed Student's t -test (∗∗∗ p < 0.001).
Article Snippet: In this study, we systematically engineered E. coli C600 (ATCC 23724) [ ], a strain with efficient and low-energy xylose transport, as the chassis for succinate production from lignocellulosic sugars.
Techniques: Selection, Comparison, Plasmid Preparation, Expressing, Gene Expression, Clone Assay, Biomarker Discovery, Standard Deviation, Two Tailed Test